MicroRNAs as Key Regulators of Ovarian Cancers

Author:

Satapathy Sandeep1ORCID,Kumar Chanchal2,Singh Roshan Kumar3

Affiliation:

1. Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India

2. Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India

3. Department of Zoology, University of Delhi, Delhi, India

Abstract

The tumor microenvironment can be realistically viewed as an active battle ground between the host immune system and the growing tumor cells. This reactive space surrounding the tumor possesses several possibilities and facilitates the progression of a tumor from a neoplastic stage to that of metastasis. The contemporary approach of understanding the cancer biology from a “within the cell” perspective has been largely challenged with complex and intricate “outside the cell” events. Thus understanding the biology of the tumor microenvironment has been of scientific and clinical interest. Small non-coding microRNAs with a pleotropic and wide range of cellular gene targets can be reasonably hypothesized to regulate the events of carcinogenesis and progression. MicroRNAs have been investigated in different cancer models, and evidence of their involvement in the regulation of the tumor microenvironment has been of much interest. In particular, a major interest has been exploring the role of the tumor microenvironment in regulating the interaction of cancer cells with surrounding stromal components and the effect of such interactions on the cancer cells. Fine-tuned regulation by these microRNAs extends our contemporary understanding of these small biomolecules in epigenetic regulations. This review focuses on microRNAs that are dysregulated in ovarian carcinomas, their effect on the components of the tumor microenvironment, and the correlation of their heterogeneous expression profiles with disease severity and prognosis in patients. In addition, this paper also discusses the differential expression of exosomal microRNAs that are known to link the cancer cell with its microenvironment, facilitating the development of an improved prognostic/diagnostic marker and effective therapeutic regime.

Publisher

SAGE Publications

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3