Classification of artificial intelligence techniques for early architectural design stages

Author:

Vissers-Similon Elien1ORCID,Dounas Theodoros1,De Walsche Johan1

Affiliation:

1. Faculty of Design Sciences - Architecture, Universiteit Antwerpen, Antwerpen, Belgium

Abstract

This paper provides a strategic classification of artificial intelligence (AI) techniques based on a systematic literature review and four levels of potential: the levels of input, output, collaboration and creativity. The classification demonstrates the potential and challenges of the AI techniques when used in early stages of architectural design. We aspire to help architects, researchers and developers to choose which AI techniques might be worth pursuing for specific tasks, optimising the use of today’s computational power in architectural design workflows. The results of the classification strongly indicate that Evolutionary Computing, Transformer Models and Graph Machine Learning hold the greatest potential for impact in early architectural design, and thus merit the attention to achieve that potential. Moreover, the classification assists with building multi-technique applications and helps to identify the most suitable AI technique for different circumstances such as the architect’s programming skills, the availability of training data or the nature of the design problem.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3