Using genetic algorithm to automate the generation of an open-plan office layout

Author:

Chen Chen1ORCID,Chacón Vega Ricardo Jose2,Kong Tiong Lee3

Affiliation:

1. SJ-NTU Corporate Lab, Nanyang Technological University, Singapore

2. CBRE Pte. Ltd (Singapore), Singapore

3. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore

Abstract

Today, the concept of open plan is more and more widely accepted that many companies have switched to open-plan offices. Their design is an issue in the scope of space layout planning. Although there are many professional architectural layout design software in the market, in the real life, office designers seldom use these tools because their license fees are usually expensive and using them to solve an open-plan office design is like using an overly powerful and expensive tool to fix a minor problem. Therefore, manual drafting through a trial and error process is most often used. This article attempts to propose a lightweight tool to automate open-plan office layout generation using a nested genetic algorithm optimization with two layers, where the inner layer algorithm is embedded in the outer one. The result is enhanced by a local search. The main objective is to maximize space utilization by maximizing the size of the open workspace. This approach is different from its precedents, in that the location search is conducted on a grid map rather than several pre-selected candidate locations. Consequently, the generated layout design presents a less rigid workstation arrangement, inviting a casual and unrestrictive work environment. The real potential of the approach is reflected in the productivity of test fits. Automating and simplifying the generation of layouts for test fits can tremendously decrease the amount of time and resources required to generate them. The experimental case study shows that the developed approach is powerful and effective, making it a totally automated process.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3