The object-based shift direction anisotropy is modulated by the horizontal visual field meridian

Author:

Barnas Adam J12ORCID,Greenberg Adam S13

Affiliation:

1. Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

2. Department of Psychology, University of Florida, Gainesville, FL, USA

3. Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA

Abstract

Reallocating object-based attention across the visual field meridians is significantly faster horizontally than vertically (termed the shift direction anisotropy; SDA), implicating the meridians in reorienting object-based attention. Here, we tested the modulatory role of the meridians in the emergence of the SDA by manipulating meridian local feature contrast. Considering the notion of separate pools of attentional resources in each cortical hemisphere, we hypothesised that manipulating the horizontal meridian would selectively modulate the SDA. In four experiments, participants were presented with an “L”-shaped object and detected a target that appeared at either a cued location or at one of two equidistant non-cued locations at the far end of the horizontal or vertical object arm. Meridian local feature contrast was manipulated with perceptually strong enhancements (visible lines and colour contrast borders) and perceptually weak enhancements (illusory borders from line texture patterns and inducers). Weak enhancements of the meridians did not significantly modulate SDA magnitude; however, during perceptually strong enhancements of the horizontal meridian, the SDA was significantly reduced compared with both vertical meridian enhancement and no-enhancement conditions. Moreover, horizontal and vertical shift RTs were statistically equivalent when the horizontal meridian was enhanced with a visible line, our strongest manipulation, indicating the SDA was eliminated. These results suggest that the SDA emerges due to reallocating object-based attention across the horizontal meridian. We interpret this finding as evidence in support of the theory by which anatomical segregations of the visual system determine how pools of attentional resources resolve competition between and within cortical hemispheres.

Funder

University of Wisconsin-Milwaukee Research Growth Initiative

US-Israel Binational Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3