Affiliation:
1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, P.R. China
Abstract
Sudden disaster events are usually unpredictable and uncontrollable, and how to achieve efficient and accurate disaster information dissemination is an important topic for society security. At present, social sensor networks which integrate human mobile sensors and traditional physical sensors are widely used in dealing with emergencies. Previous studies mainly focused on the impact of human mobility patterns on social sensor networks. In this article, based on the inherent autonomy property of human individuals, we propose a social sensor information dissemination model, which mainly focuses on the impact of the individual characteristics, social characteristics, and group information dissemination mode on social sensor networks. Specifically, the human sensor model is first constructed based on the inherent social and psychological attributes of human autonomy. Then, various information dissemination models such as one-to-one, one-to-many, and peer-to-peer are proposed by considering different transmission media and human interaction preferences. We simulate the environment of information dissemination in disaster events based on the NetLogo platform. Evaluation matrix is applied to test the performance of social sensor information dissemination model, such as event dissemination coverage, event delivery time, and event delivery rate. With the comparisons to epidemic model, social sensor information dissemination model shows excellent performance in improving the efficiency and accuracy of information transmission in disaster events.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Education and Research Project of Beijing University of Civil Engineering and Architecture
National Key R&D Program of China
Subject
Computer Networks and Communications,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献