Affiliation:
1. Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
Abstract
In the 1920s, Otto Warburg observed the phenomenon of altered glucose metabolism in cancer cells. Although the initial hypothesis suggested that the alteration resulted from mitochondrial damage, multiple studies of the subject revealed a precise, multistage process rather than a random pattern. The phenomenon of aerobic glycolysis emerges not only from mitochondrial abnormalities common in cancer cells, but also results from metabolic reprogramming beneficial for their sustenance. The Warburg effect enables metabolic adaptation of cancer cells to grow and proliferate, simultaneously enabling their survival in hypoxic conditions. Altered glucose metabolism of cancer cells includes, inter alia, qualitative and quantitative changes within glucose transporters, enzymes of the glycolytic pathway, such as hexokinases and pyruvate kinase, hypoxia-inducible factor, monocarboxylate transporters, and lactate dehydrogenase. This review summarizes the current state of knowledge regarding inhibitors of cancer glucose metabolism with a focus on their clinical potential. The altered metabolic phenotype of cancer cells allows for targeting of specific mechanisms, which might improve conventional methods in anti-cancer therapy. However, several problems such as drug bioavailability, specificity, toxicity, the plasticity of cancer cells, and heterogeneity of cells in tumors have to be overcome when designing therapies based on compounds targeted in cancer cell energy metabolism.
Subject
Oncology,Hematology,General Medicine
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献