Prospective Frontal Plane Angles Used to Predict ACL Strain and Identify Those at High Risk for Sports-Related ACL Injury

Author:

Bates Nathaniel A.123,Myer Gregory D.456,Hale Rena F.7,Schilaty Nathan D.123,Hewett Timothy E.89

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.

2. Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota, USA.

3. Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, USA.

4. The Sport Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.

5. Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.

6. The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA.

7. Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA.

8. Sparta Science, Menlo Park, California, USA.

9. The Rocky Mountain Consortium for Sports Research, Edwards, Colorado, USA.

Abstract

Background: Knee abduction moment during landing has been associated with anterior cruciate ligament (ACL) injury. However, accurately capturing this measurement is expensive and technically rigorous. Less complex variables that lend themselves to easier clinical integration are desirable. Purpose: To corroborate in vitro cadaveric simulation and in vivo knee abduction angles from landing tasks to allow for estimation of ACL strain in live participants during a landing task. Study Design: Descriptive laboratory study. Methods: A total of 205 female high school athletes previously underwent prospective 3-dimensional motion analysis and subsequent injury tracking. Differences in knee abduction angle between those who went on to develop ACL injury and healthy controls were assessed using Student t tests and receiver operating characteristic analysis. A total of 11 cadaveric specimens underwent mechanical impact simulation while instrumented to record ACL strain and knee abduction angle. Pearson correlation coefficients were calculated between these variables. The resultant linear regression model was used to estimate ACL strain in the 205 high school athletes based on their knee abduction angles. Results: Knee abduction angle was greater for athletes who went on to develop injury than for healthy controls ( P < .01). Knee abduction angle at initial contact predicted ACL injury status with 78% sensitivity and 83% specificity, with a threshold of 4.6° of knee abduction. ACL strain was significantly correlated with knee abduction angle during cadaveric simulation ( P < .01). Subsequent estimates of peak ACL strain in the high school athletes were greater for those who went on to injury (7.7-8.1% ± 1.5%) than for healthy controls (4.1-4.5% ± 3.6%) ( P < .01). Conclusion: Knee abduction angle exhibited comparable reliability with knee abduction moment for ACL injury risk identification. Cadaveric simulation data can be extrapolated to estimate in vivo ACL strain. Athletes who went on to ACL injury exhibited greater knee abduction and greater ACL strain than did healthy controls during landing. Clinical Relevance: These important associations between the in vivo and cadaveric environments allow clinicians to estimate peak ACL strain from observed knee abduction angles. Neuromuscular control of knee abduction angle during dynamic tasks is imperative for knee joint health. The present associations are an important step toward the establishment of a minimal clinically important difference value for ACL strain during landing.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3