Modeling and analysis of the nonlinear indentation problems of functionally graded elastic layered solids

Author:

Attia Mohamed A12,El-Shafei Ahmed G1

Affiliation:

1. Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig, Egypt

2. Department of Mechanical Engineering, College of Engineering, Shaqra University, Riyadh, Saudi Arabia

Abstract

In tribological and thermo-electro-mechanical applications with an appropriate gradation of properties, functionally graded materials provide superior performance for damage and wear resistance of contact systems and thermal and mechanical responses for other mechanical devices. This paper presents a nonlinear mixed variational-based computational model for the analysis of nonlinear plane indentation problems of elastic functionally graded layered elastic solids. The functionally graded elastic layer is perfectly bonded to the elastic substrate and is normally loaded by a cylindrical rigid punch. In addition to nonlinearity inherent to the contact problem, the developed model accounts for the geometric nonlinearity in the sense of larger displacements and rotations, but smaller strains. The modulus of elasticity as well as Poisson's ratio of the graded layer are varying along the thickness of the layer according to both exponential and power laws. On the contrary, in the conventional homogeneous finite element formulation the isoparametric graded finite element formulation is adopted on the level of Gaussian integration points to realize the gradation in material properties. The friction at the contact interface is modeled using Coulomb's friction law. Moreover, the inequality contact constraints are exactly satisfied throughout the contact interface by employing the Lagrange multiplier method, where the indentation force and the displacement fields are treated as independent variables. The obtained results of contact pressure, tangential contact stress, stress distribution, and indentation force show a significant influence of the material distribution, gradation law, gradient index, and thickness of the functionally graded layer.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3