Static performance of the aerostatic journal bearing with grooves

Author:

Chen Xinglong12,Mills James K2,Bao Gang1

Affiliation:

1. School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, China

2. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada

Abstract

Aerostatic bearings are widely employed in precision machines due to their properties of low friction, low heat conduction, and long-life operation. In this work, static performance of the journal bearing with rectangular grooves is investigated numerically. The effect of geometrical parameters such as axial groove length [Formula: see text], circumferential groove length [Formula: see text], orifice diameter df, groove depth gh, misalignment angles [Formula: see text] and [Formula: see text] on the load capacity [Formula: see text], stiffness [Formula: see text], and gas flow rate [Formula: see text] are analyzed systematically. The resistance network method (RNM) is utilized to solve the Reynolds equation required in the analysis. Performance parameters including pressure distribution P, load force [Formula: see text], stiffness [Formula: see text], and gas flow rate [Formula: see text] are examined in the simulations. It is revealed from the simulations that the proper value of axial groove length [Formula: see text] to obtain a better static performance varies from 1/8 to 1/2 when df varies between 0.11 and 0.29 mm, respectively. Therefore, a larger load force and stiffness can be obtained if [Formula: see text] is chosen to be 1/4, when diameter of the bearing orifice df equals 0.17 mm. It is also suggested that [Formula: see text] be chosen from the range of 1/6 and 1/3 to obtain a better static performance and a smaller gas flow rate. [Formula: see text] decreases with an increase in df when [Formula: see text] is set to be 1/8. However, the load force [Formula: see text] increases with an increase in df when [Formula: see text] varies from 3/8 to 1/2. [Formula: see text] has a significant influence on the changes of [Formula: see text] with df when [Formula: see text] is set to be constant. Therefore, df should be selected according to [Formula: see text] for an optimal design. The increase of misalignment angle [Formula: see text] leads to an increase in the load force [Formula: see text]. [Formula: see text] has little influence on the load force [Formula: see text]. Misalignment angles [Formula: see text] and [Formula: see text] have little influence on stiffness [Formula: see text] and gas flow rate [Formula: see text]. Therefore, it is preferable if [Formula: see text] is larger than 0 rad.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3