Piston-ring film thickness: Theory and experiment compared

Author:

Garcia-Atance Fatjo Gonzalo1,Smith Edward H1,Sherrington Ian1

Affiliation:

1. Jost Institute for Tribotechnology, University of Central Lancashire, Preston, UK

Abstract

A review of the published literature has demonstrated a large variability and discrepancies in the measured and predicted values of piston-ring lubricating film thickness in internal combustion engines. Only two papers have been found that compare experiments in firing engines directly with outputs from sophisticated ring-pack lubrication models. The agreement between theory and experiment in these comparisons was limited, possibly because of inadequacies in the models and/ or inaccuracies of measurement. This paper seeks to contribute to the literature by comparing accurately calibrated experimental measurements of piston-ring film thickness in a firing engine with predictions from an advanced, commercial software package alongside details of the systematic analysis of the measurement errors in this process. Suggestions on how measurement accuracy could be further improved are also given. Measurements of oil-film thickness with an error (standard deviation) of ±15% have been achieved. It is shown that this error can be reduced further, by changes in the design and installation of the sensors. Detailed experimental measurements of film thickness under the top compression ring in a firing petrol engine have been made and compared with the predictions from a commercial, state-of-the art modelling package. The agreement between theory and experiment is excellent throughout the stroke in most cases, but some significant differences are observed at the lower load conditions. These differences are as yet unexplained, but may be due to the sensor topography influencing the hydrodynamic lubrication, lubricant availability, out-of-roundness in the cylinder or squeeze effects. This is a topic that requires further study.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3