Finite element modelling of a single-particle impact during abrasive waterjet milling

Author:

Anwar S1,Axinte D A1,Becker A A1

Affiliation:

1. Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham, UK

Abstract

In this study, an attempt has been made to study the basic aspects of abrasive waterjet (AWJ) controlled-depth process using the finite element (FE) method to predict the profile of the crater produced by single particle impact rather than to perform first the simulation of full jet plume impingement. It is believed that the first should be a sine-qua-non-condition for developing the multiparticle impingement simulation to address the real-life AWJ milling process. The main objective of this article is to simulate and experimentally validate the profile of the craters at different impact angles of particles accelerated with waterjet. The workpiece material modelled is a Ti-based superalloy (Ti–6Al–4V) extensively used in the aerospace industry. The current model takes into account the effects of high-strain rate plastic deformation and adiabatic heating. The FE-simulated profiles of the craters are found to be in good agreement with experimentally generated data. The presented work provides a good (experimentally validated) basis for further FE modelling of the AWJ milling process, where influences such as particles’ shape, rotation, and multiple overlapping impacts can be further investigated.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of operations in waterjet technology: a review;Advances in Materials and Processing Technologies;2023-11-06

2. Hybrid PD-DEM approach for modeling surface erosion by particles impact;Computational Particle Mechanics;2023-05-18

3. A review of additives in abrasive water jet machining and their performance;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2022-12-21

4. Effect of a Single Particle in Abrasive Waterjet Machining on 42CrMo4 Modifications;Procedia CIRP;2022

5. Theoretical Modeling and Experimental Analysis of Single-Particle Erosion Mechanism of Optical Glass;Micromachines;2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3