Experimental measurements of the thermo elastic behavior of a dry gas seal operating with logarithmic spiral grooves of 11° and 15°

Author:

Chávez Alfredo1ORCID,De Santiago Oscar2ORCID

Affiliation:

1. Virtual and Manufacturing Engineering, CIATEQ, A.C., Querétaro, México

2. ETU i+D S.A. de C.V., Querétaro, México

Abstract

This work shows the experimental thermo elastic behavior of the stationary ring of a dry gas seal with logarithmic spiral grooves of 15° (common commercial configuration) and 11° spiral (configuration evaluated to confirm analytical predictions developed on previous works), as well as the hydrodynamic pressure of the fluid film. The stationary ring temperature is obtained through an array of sensors embedded in the ring and the ring deformation, resulting from the thermal and mechanical load, is collected by two strain gages. The hydrodynamic pressure produced in the fluid film is measured using dynamic pressure sensors. Two novel instrumentation methods are defined to collect the ring deformation and the dynamic pressure of the seal. The results show that the seal with spiral grooves of 11° at low speed presents a temperature increment induced by the contact between the rings; this contact may induce the premature fault of the rings, so that the 11° spiral seal needs more speed than the spiral of 15° to enter a hydrodynamic lubrication regime. The experiments show that the stationary ring distortion is induced by the temperature gradient and by the hydrostatic and hydrodynamic pressure; however, the thermal distortion of the ring is dominant for the current experimental conditions. The ring’s axial distortion also affects the seal static and dynamic performance due to the modification of the hydrodynamic regime.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3