Finite element investigation of friction and wear of microgrooved cutting tool in dry machining of AISI 1045 steel

Author:

Ma Jianfeng1,Duong Nick H1,Lei Shuting2

Affiliation:

1. Department of Aerospace & Mechanical Engineering, Saint Louis University, USA

2. Department of Industrial & Manufacturing Systems Engineering, Kansas State University, USA

Abstract

This article studies the tribological performance of microgrooved cutting tool in dry orthogonal machining of mild steel (AISI 1045 steel) using finite element simulation. The purpose is to examine the effects of microgrooves on friction and wear of the textured tools and to compare it with non-textured cutting tools. For the cemented carbide (WC/Co) cutting inserts, microgrooves are designed on the rake face. Specifically, the following groove parameters are examined: groove width, groove depth, and edge distance (the distance from the cutting edge to the first groove). Their effects are assessed in terms of friction coefficient and wear on the rake face. It is found that microgrooved cutting tools can significantly reduce friction and wear in machining, which is attributed mainly to the reduced chip–tool contact length.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3