Tribological properties of bronze surface with dimple textures fabricated by the indentation method

Author:

Wu Jianzhao12,Yu Aibing1ORCID,Chen Qiujie1,Wu Maochao1,Sun Lei1,Yuan Jiandong1

Affiliation:

1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China

2. The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science &Technology, Wuhan, China

Abstract

Surface texturing is an effective approach to improve the tribological properties of mechanical components. An indentation method is presented to fabricate dimple textures on bronze specimen surfaces. Graphite was selected as the mating balls in ball-on-disc wear tests. The worn surfaces and the indented dimples heaped with the thin ribbon debris were observed by microscope. The morphology and evolution of wear debris were employed to explain the influence of indented dimple textures. The experimental results indicate that the generation of thin ribbon debris is due to the edge hardening of indented dimple. The thin ribbon debris and the indented conical dimple are conducive to the debris heaping on slopes of dimples, which can facilitate the formation of the graphite-rich transfer layers on indented dimple surface. Compared with nontextured surface, indented dimple surface has lower coefficients of friction and slighter wear. The tribological properties of indented dimple surface are improved because of the edge hardening, the debris heaping and the formation of transfer layers.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3