Thermal interactions in rolling bearings

Author:

Gupta Pradeep K1,Taketa Jared I2,Price Craig M2

Affiliation:

1. PKG Inc., Clifton Park, USA

2. Rolls-Royce Corporation, Indianapolis, USA

Abstract

Rolling bearing dynamics model, based on classical differential equations of motion of bearing elements coupled with thermal interactions, is presented. While churning and drag effects are based on classical laminar and turbulent flow theories, independently measured lubricant rheology, including shear dependence of viscosity, is used to model lubricant traction. The energy equation is integrated through the lubricant film to first compute Newtonian traction with thermal effects. Viscosity dependence on shear stress is then applied to model “shear-thinning” effects. At very high contact pressure and very low slide-to-roll ratios material creep effects, where the behavior of lubricated and dry contacts is similar, are implemented, while a shear stress limit is applied at very high slide-to-roll ratios. Traction predictions for a typical contact in a traction rig show good agreement with experimental traction data. Transient heat generations are time-averaged over thermal time step to compute time-varying temperature fields in the bearing, which alter properties of bearing materials, operating bearing geometry, and rheology of the lubricant. As the transient solutions converge to stable operating temperatures, bearing heat generation approaches the expected steady-state value. Heat generation predictions for both ball and rolling bearings are in good agreement with measured experimental data.

Funder

US Air Force

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3