Evaluation of the performance characteristics of aerostatic bearing with porous alumina (Al2O3) membrane using theoretical and experimental methods

Author:

Chakraborty Bivash1,Bhattacharjee Biplab2ORCID,Chakraborti Prasun1,Biswas Nabarun3ORCID

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology Agartala, Agartala, Tripura, India

2. Center for Additive Manufacturing, Chennai Institute of Technology, Chennai, Tamil Nadu, India

3. Production Engineering Department, National Institute of Technology Agartala, Agartala, Tripura, India

Abstract

Instruments with high levels of precision commonly use aerostatic bearings. Moreover, the use of porous (Al2O3 membrane) material validates that the pressure is spread uniformly throughout the air film region. The impression of applied load on the thickness of the air film of the aerostatic bearings was evaluated using a certain experimental technique. As the applied load rises, the thickness of the air film expands, and as the compressive stress rises, it contracts. The theoretical model parameters were set using the experimental stipulations. It was discovered that the theoretical model and the experimental data were consistent. The pressure gradient induced in the air film and the air bearings’ capacity for carrying loads were calculated using a theoretical simulation. The results of theoretical modeling and experimental comparison of the different characteristics of porous (Al2O3 membrane) aerostatic bearings based on stiffness and load-carrying capacity are graphically illustrated in this study. Porous aerostatic bearings with Al2O3 membranes have a number of potential applications, including high-speed spindles, precision instruments, microelectromechanical systems, vacuum pumps, cryogenic applications, etc.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3