Finite element analysis of multirecess hybrid spherical journal bearing system

Author:

Tomar Adesh K1,Sharma Satish C1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Tribology Laboratory, Indian Institute of Technology, Roorkee, India

Abstract

The present work deals with finite element method analysis of a multirecess hybrid spherical journal bearing system. The governing equations have been discretized using Galerkin’s technique and are solved simultaneously using a suitable iterative technique. The effect of span angle on the static and dynamic behavior of a hybrid spherical journal bearing compensated with membrane restrictor is investigated in the present work. Numerical results indicate that larger values of span angle provide enhanced value of minimum fluid-film thickness [Formula: see text], reduced lubricant flow requirement [Formula: see text], and higher value of frictional torque [Formula: see text]. Further, the results have been compared with a correspondingly similar capillary-compensated bearing. The comparison of numerically results demonstrates that the value of direct fluid-film stiffness coefficient [Formula: see text] could be 45.90% higher than that of correspondingly similar capillary-compensated bearing. The numerical results presented in this work may be useful as design guidelines for a recessed hybrid spherical journal bearing.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimization of liquid metal bearing based on NSGA-II;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-08-14

2. Optimization of twin grooved two-lobe textured hydrodynamic journal bearing design by using genetic algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-23

3. Influence of geometric shapes of recess on the performance of MR lubricated multi-recessed hybrid spherical thrust bearing;Tribology International;2024-03

4. Performance Analysis of Textured Spherical Hybrid Journal Bearings Operated With Magnetorheological Fluid;Journal of Tribology;2023-10-18

5. Simplified Calculation of Recess Pressure Considering the Hydrodynamic Effect;Journal of Tribology;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3