Primary and Secondary Carnitine Deficiency Syndromes

Author:

Pons Roser1,De Vivo Darryl C.1

Affiliation:

1. Departments of Neurology and Pediatrics, The Colleen Giblin Laboratories for Pediatric Neurology Research, Columbia-Presbyterian Medical Center, New York, NY

Abstract

The objective of this article is to review primary and secondary causes of carnitine deficiency, emphasizing recent advances in our knowledge of fatty acid oxidation. It is now understood that the cellular metabolism of fatty acids requires the cytosolic carnitine cycle and the mitochondrial β-oxidation cycle. Carnitine is central to the translocation of the long chain acyl-CoAs across the inner mitochondrial membrane. The mitochondrial β-oxidation cycle is composed of a newly described membrane-bound system and the classic matrix compartment system. Very long chain acyl-CoA dehydrogenase and the trifunctional enzyme complex are embedded in the inner mitochondrial membrane, and metabolize the long chain acyl-CoAs. The chain shortened acyl-CoAs are further degraded by the well-known system in the mitochondrial matrix. Numerous metabolic errors have been described in the two cycles of fatty acid oxidation; all are transmitted as autosomal recessive traits. Primary or secondary carnitine deficiency is present in all these clinical conditions except carnitine palmitoyltransferase type I and the classic adult form of carnitine palmitoyltransferase type II deficiency. The sole example of primary carnitine deficiency is the genetic defect involving the active transport across the plasmalemmal membrane. This condition responds dramatically to oral carnitine therapy. The secondary carnitine deficiencies respond less obviously to carnitine replacement. These conditions are managed by high carbohydrate, low fat frequent feedings, and vitamin/cofactor supplementation (eg, carnitine, glycine, and riboflavin). Medium chain triglycerides may be useful in the dietary management of patients with inborn errors of the cytosolic carnitine cycle or the mitochondrial membrane-bound long chain specific β-oxidation system. (J Child Neurol 1995;10(Suppl):2S8-2S24).

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3