Evaluation of an Activity Tracker to Detect Seizures Using Machine Learning

Author:

Mittlesteadt Jackson1,Bambach Sven2,Dawes Alex3,Wentzel Evelynne2,Debs Andrea2,Sezgin Emre2ORCID,Digby Dan2,Huang Yungui2,Ganger Andrea4,Bhatnagar Shivani4,Ehrenberg Lori4,Nunley Sunjay5,Glynn Peter4,Lin Simon2,Rust Steve2,Patel Anup D.4ORCID

Affiliation:

1. University of Notre Dame, South Bend, IN, USA

2. Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA

3. The Ohio State University, Columbus, OH, USA

4. Division of Neurology, Nationwide Children’s Hospital, Columbus, OH, USA

5. Prisma Health Children’s Hospital and University of South Carolina School of Medicine, Greenville, SC, USA

Abstract

Currently, the tracking of seizures is highly subjective, dependent on qualitative information provided by the patient and family instead of quantifiable seizure data. Usage of a seizure detection device to potentially detect seizure events in a population of epilepsy patients has been previously done. Therefore, we chose the Fitbit Charge 2 smart watch to determine if it could detect seizure events in patients when compared to continuous electroencephalographic (EEG) monitoring for those admitted to an epilepsy monitoring unit. A total of 40 patients were enrolled in the study that met the criteria between 2015 and 2016. All seizure types were recorded. Twelve patients had a total of 53 epileptic seizures. The patient-aggregated receiver operating characteristic curve had an area under the curve of 0.58 [0.56, 0.60], indicating that the neural network models were generally able to detect seizure events at an above-chance level. However, the overall low specificity implied a false alarm rate that would likely make the model unsuitable in practice. Overall, the use of the Fitbit Charge 2 activity tracker does not appear well suited in its current form to detect epileptic seizures in patients with seizure activity when compared to data recorded from the continuous EEG.

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3