Mechanical Behavior of Thermoplastic FML-reinforced Sandwich Panels Using an Aluminum Foam Core: Experiments and Modeling

Author:

Reyes German1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA,

Abstract

Sandwich panels manufactured using thermoplastic fiber-metal laminates (FML) skins and an aluminum foam core were tested under quasi-static and low-velocity impact loading conditions. The quasi-static properties of the sandwich beams were evaluated using the three-point bend test geometry. Energy absorbing mechanisms such as buckling and interfacial delamination in the FML skin, as well as indentation, crushing, and densification in the aluminum foam have been observed to contribute to the excellent energy absorbing characteristics offered by these systems. The low-velocity impact behavior of the sandwich panels was evaluated using an instrumented dropping weight impact tower and modeled using an energy balance approach. A breakdown of the energy absorption revealed that these sandwich structures absorb much of the impact energy due to contact and bending effects. Finally, four-point bend testing after low-velocity impact revealed that these systems offer excellent residual flexural strength with relative values remaining close to 80% of the original strength after a 32 J impact.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3