Experimental study on the high-velocity impact behavior of sandwich structures with an emphasis on the layering effects of foam core

Author:

Abbasi Mohammad1,Alavi Nia Ali1ORCID,Abolfathi Mostafa1

Affiliation:

1. Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran

Abstract

In this study, the effects of the core layering of sandwich structures, as well as arrangements of these layers on the ballistic resistance of the structures under high-velocity impact, were investigated. Sandwich structures consist of aluminum face-sheets (AL-1050) and polyurethane foam core with different densities. Three sandwich structures with a single-layer core of different core densities and four sandwich structures with a four-layer core of different layers arrangements were constructed. Cylindrical steel projectiles with hemispherical nose, 8 mm diameter and 20 mm length were used. The projectile impact velocity range was chosen from 180 to 320 m/s. Considering constant mass and total thickness for the core, the results of the study showed that the core layering increases the ballistic limit velocity of the sandwich structures. The ballistic limit velocity of the panels with a four-layer core of different arrangements, compared to the panel with the single-layer core, is higher from 5% to 8%. Also, for the single-layer core structure, by increasing the core density, the ballistic limit velocity was increased. Different failure mechanisms such as plugging, petaling and dishing occurred for the back face-sheet. The dishing area diameter of back face-sheets was proportional to the ballistic resistance of each sandwich structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3