Influence of face sheet thickness on flexural strength characteristics of carbon/epoxy/Nomex honeycomb sandwich panels

Author:

Naresh Kakur12,Alia Ruzanna Aziz1,Cantwell Wesley J.1,Umer Rehan1,Khan Kamran Ahmed1ORCID

Affiliation:

1. Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

2. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA

Abstract

This study presents the findings of an investigation into the effect of varying the thickness of a carbon/epoxy face sheet of a Nomex honeycomb sandwich panel on its the flexural properties. The thickness (hs) of the face sheet was varied by increasing the number of plies from one 0.25 mm thick layer to eight such layers, giving a total nominal thickness of 2.0 mm, whilst maintaining a constant thickness of the core. The flexural properties of the sandwich panels were investigated through a series of three- and four-point bending tests. A particular focus was on identifying changes in the failure mode with increasing face sheet thickness. The flexural properties of the sandwich panels were predicted using sandwich beam theory, where the deviation from the experimental values was shown to be less than 13%. A two parameter Weibull distribution model was used to predict the maximum flexural load using an analysis of variance (ANOVA) tool and an excellent level of correlation was observed with the experimental values. The difference between the predicted maximum load values and the experimental results was below 5% in all cases. A brittle mode of failure was observed in the thickest panel. The sandwich panel based on 1.5 mm thick face sheet was identified as being the most appropriate design, both in terms of strength and stiffness.

Funder

Department of Education and Knowledge

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3