Low-velocity impact damage of bionic turtle shell sandwich laminates with different suture shapes

Author:

Zhang Xu1ORCID,Min Benzhi1,Zhao Shouji1,Fu Qiang1,Zhang Di1,Wang Zhenqing1ORCID

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, China

Abstract

Turtle shells have evolved over millions of years, developing exceptional mechanical properties such as high relative strength and toughness, rendering them highly effective in resisting impacts. This study delves into the impact resistance of bionic turtle shell structures with various suture shapes. This article analyzes the low-velocity impact of carbon fiber epoxy resin prepreg (CF/EP) composite sandwich panels with a suture interface by using the finite element simulation. The simulations encompass closed and unclosed models featuring bonded and unbonded tips, each with diverse trapezoidal geometries (triangular, trapezoidal, anti-trapezoidal, and rectangular). The findings reveal that sandwich structures with suture interfaces demonstrate significantly enhanced impact resistance compared to those lacking sutures, displaying 3–9 times greater deformation capacity and 20–30 times higher energy absorption capacity. The impact resistance of the triangular suture interface exceeded that of other bioinspired suture shapes, with trapezoidal and anti-trapezoidal sutures also enhancing stiffness, strength, and toughness. Additionally, a 6° bonded tip angle resulted in optimal performance for the triangular suture interface across all analyzed perspectives. The simulation study in this paper provides comprehensive and reliable data on low-velocity impact results, offering fundamental insights for researchers to design composite material structures that meet specific mechanical requirements effectively. Additionally, it offers novel ideas for the connection of protective structures, such as artificial armor.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3