A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets

Author:

Nguyen Nam V12ORCID,Nguyen-Xuan H3,Lee Jaehong1ORCID

Affiliation:

1. Department of Architectural Engineering, Sejong University, Seoul, Republic of Korea

2. Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

3. CIRTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam

Abstract

The purpose of this study is to present a quasi-three-dimensional (quasi-3D) shear deformation theory for static bending and free vibration analyses of porous sandwich functionally graded (FG) plates with graphene nanoplatelets (GPLs) reinforcement. In addition, we propose a novel sandwich plate model with various outstanding features in terms of structural performance. The quasi-3D theory-based isogeometric analysis (IGA) in conjunction with refined plate theory (RPT) is first exploited to capture adequately the thickness stretching effect for porous sandwich FG plate structures reinforced with GPLs. The Non-Uniform Rational B-Splines (NURBS)-based IGA is employed in order to describe exactly the geometry models as well as approximate the unknown field with higher-order derivatives and continuity requirements while the RPT model includes only four essential variables. The sandwich FG plates consist of a core layer containing internal pores reinforced by GPLs and two functionally graded materials (FGMs) skin layers. Effective mechanical properties can be evaluated by employing the Halpin-Tsai model along with the rule of mixture. Various combinations of two porosity distributions and three GPL dispersions in the core layer are thoroughly investigated. Several numerical investigations are conducted to examine the effects of several key parameters on the static bending and free vibration behaviors of sandwich FG plate structures.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3