Automatic fault diagnosis of rolling bearings under multiple working conditions based on unsupervised stack denoising autoencoder

Author:

Wang Lei1,Rao Hang1,Dong Zhengcheng2ORCID,Zeng Wenhui1,Xu Fan1,Jiang Li1,Zhou Chao3

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, PR China

2. School of Automation, Wuhan University of Technology, Wuhan, PR China

3. Institute of Laser and Photonic Engineering, CASIC, Wuhan, PR China

Abstract

In practical engineering, data often lack labels, resulting in difficulty in fault diagnosis. Because stack-denoising autoencoders possess robust feature extraction capabilities and resistance to interference, an automatic and unsupervised bearing fault diagnosis method based on the stack-denoising autoencoder without an output layer was proposed in this study. As the stacked denoising autoencoder is an unsupervised algorithm, this approach can reduce reliance on manually labeled data labels. Therefore, this study proposed a new method for automatic fault diagnosis. First, the bearing fault features of the rolling bearing were extracted using the stack denoising autoencoder without an output layer. Meanwhile, the dimensions of the features were directly reduced to two or three dimensions by several hidden layers, thereby reducing manual experience. Second, the labels extracted from the clustering model were selected as inputs for different classifier models to automatically identify different types of faults. Two open-source rolling bearing datasets under various conditions were used to validate the classification performance of the proposed method. Finally, its effectiveness was verified using the experimental results. Various indicators were used to evaluate the performance of the proposed method, and the results showed an automatic bearing fault diagnosis accuracy of up to 90% when using different models and working conditions. Among the two datasets, the classification model achieved the highest accuracies of 0.99667 and 0.97143 and the lowest accuracies of 0.98000 and 0.90476, respectively.

Funder

Fundamental Research Funds for the Central Universities

Hubei Province science and technology plan funds

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3