Vibration-based looseness identification of bolted structures via quasi-analytic wavelet packet and optimized large margin distribution machine

Author:

Yang Wenzhan1ORCID,Zhang Zhousuo12ORCID,Chen Xu1

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China

2. State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China

Abstract

Bolted joints are the most widely utilized connection types in industries, and therein looseness identification of bolted structures is of great significance to guarantee structural reliability. In this article, a comprehensive study of bolt looseness identification under random excitation is presented. To fulfill this task, this research focuses on three prominent difficulties, including nonstationary signal processing, subtle feature extraction, and robust state classification. First, a novel filter bank structure of quasi-analytic dual-tree complex wavelet packet transform is constructed to analyze the measured vibration response signals, for purpose of capturing subtle feature information. Then, multiple features are extracted from subband signals to capture the variations of dynamic characteristics, and sensitive features are selected by Laplacian score to construct the low-dimensional feature set. Subsequently, a novel classifier with better generalization performance, named large margin distribution machine, is optimized with the wavelet kernel function and the whale optimization algorithm, in order to handle the intrinsic uncertainty related to the looseness states of bolted structures. After feeding the low-dimensional feature set, the proposed classifier is trained to identify looseness states of bolted structures. Finally, experiments of a two-bolt lapped beam under random excitation are conducted to verify the effectiveness of the proposed method, and two typical loading conditions (paired-bolt looseness and single-bolt looseness) are considered. Besides, the superiority of the proposed method is demonstrated by comparing with other analogical methods. This research can provide a promising implement in practical applications of bolt looseness identification under random excitation.

Funder

Science Challenge Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bolt looseness detection in lap joint based on phase change of Lamb waves;Mechanical Systems and Signal Processing;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3