MS-DenseNet-GRU tool wear prediction method based on attention mechanism

Author:

Cheng Yaonan1ORCID,Xue Jing1,Lu Mengda1,Zhou Shilong1,Gai Xiaoyu1,Guan Rui1

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China

Abstract

Tool wear was an inevitable physical phenomenon in the cutting procedure. Serious tool wear has a direct effect on the level of processing quality and the effectiveness of production, and it even leads to abnormal cutting processes and a series of safety problems. Effective tool wear prediction can provide a basis for the rational use and replacement of tools to improve tool efficiency and ensure the stable operation of the machining process. Therefore, a tool wear prediction method combining multiple deep learning modules was proposed. To begin, the vibration signal was broken up using the complete ensemble empirical mode decomposition with adaptive noise algorithm. Then, the intrinsic mode functions with a strong correlation with the original signal were screened out according to the Pearson correlation coefficient for signal reconstruction. Additionally, the DenseNet module, the gate recurrent unit (GRU) module and the efficient channel attention module were deeply integrated to build a multi-scale DenseNet-GRU tool wear prediction model with attention mechanisms by learning the relationship of mapping between signal features and tool wear. Finally, the model was trained and tested using milling experimental data. The experiments’ outcomes demonstrated that the suggested method can accurately and reliably estimate the tool wear value. Compared with the DenseNet model, convolutional neural network–long short-term memory model, and DenseNet-GRU model, it further shows that it had superior performance in prediction accuracy and generalization ability. The research results can provide certain technical support for the prediction of tool wear intelligently, which is vital to raising the quality of processing, reducing production costs, and promoting the manufacturing industry’s intelligent development.

Funder

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3