Analysis of the galleries cracking causes in the backfill area of pumped storage power station based on monitoring and numerical simulation: a case study of Hohhot upper reservoir

Author:

Qiu Wen1,Li Yanlong1,Wen Lifeng1ORCID,Si Zheng1,Zhang Ye1,Duan Yongtao2

Affiliation:

1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an, China

2. PowerChina Beijing Engineering Corporation Limited, Beijing, China

Abstract

Pumped storage power stations usually arrange galleries in the backfill area at the bottom of the reservoir basin. Under the influence of uneven deformation, the galleries may be difficult to adapt to deformation and generate cracking, which can affect dam safety. In this study, the upper reservoir of Hohhot pumped storage power station was taken as a case study. Through a combination of monitoring data and numerical simulation, the deformation characteristics of the galleries on the backfill foundation were analyzed, and the causes and mechanisms of galleries cracking and structural joints damage were revealed. The in situ monitoring records cover the internal settlement of the dam, the deformation and seepage flow of the galleries, and the ambient temperature. Based on actual engineering data, a numerical model considering the structure and filling method of dam, backfill area, and gallery was established, and the calculation parameters of rockfill material constitutive model were inverted by the direct back analysis method. The monitoring data analysis and numerical calculations showed that the long length of the gallery and the sudden drop of the ambient temperature were the main reasons for the longitudinal microcracks in the top arch of the galleries in the backfill area; the strong constraint of bedrock and the uneven settlement of backfill foundation were the root causes for the penetrating cracks in the galleries at the junction of backfill area and bedrock. In addition, the depth of the gallery embedded in the bedrock determines the deformation form (torsional deformation or bending deformation) of the galleries at the junction of the backfill area and bedrock. Based on the monitoring and numerical simulation, the long-term deformation of the galleries and the development of structural joints were also predicted.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3