Monitoring of long-term prestress losses in prestressed concrete structures using fiber optic sensors

Author:

Abdel-Jaber Hiba1,Glisic Branko1

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

Abstract

This study presents a method for on-site assessment of prestress losses in prestressed concrete structures. The study is motivated by the increased use of prestressed concrete, the importance of prestressing force levels as a parameter, and the lack of formalized methods for its on-site assessment. The proposed method uses strain measurements from long-gauge fiber optic sensors to study strain changes at the centroid of stiffness (i.e. centroid of composite section) of the cross-sections. Its advantages include (1) robustness to operational load on the structure caused by seasonal and daily temperature variations, in addition to loading; (2) rigorous quantification of uncertainties associated with measurements and parameters; and (3) applicability to a wide range of beam-like structures. The application of the method is illustrated through application to measurements collected over a 7-year period from strain sensors embedded in Streicker Bridge, a post-tensioned concrete pedestrian bridge on the Princeton University campus. Application of the method indicates that prestress losses measured by sensors are of comparable magnitude to design estimates, which implies that estimates are not necessarily overly conservative.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

U.S. Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3