Combination of damage feature decisions with adaptive boosting for improving the detection performance of a structural health monitoring framework: Validation on an operating wind turbine

Author:

Tsiapoki Stavroula1ORCID,Bahrami Omid2,Häckell Moritz W3,Lynch Jerome P2ORCID,Rolfes Raimund1

Affiliation:

1. Institute of Structural Analysis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany

2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

3. Wölfel Engineering GmbH + Co. KG, Höchberg, Germany

Abstract

This article proposes the deployment of adaptive boosting (AdaBoost) for combining damage feature decisions and improving the detection accuracy of structural health monitoring algorithms. In structural health monitoring applications, damage-sensitive features are combined with classifiers to define decision boundaries and provide information about the structural state. Boosting algorithms combine multiple classifiers aiming at the improvement of their performance. In this study, AdaBoost is deployed on the realizations of a modular structural health monitoring framework, which consists of three tiers: data normalization based on environmental and operational conditions; extraction of damage features, also referred to as condition parameters; and hypothesis testing. Each condition parameter–hypothesis testing pair composes a classifier which is used in AdaBoost as a weak classifier. The integration of AdaBoost with the structural health monitoring framework is validated using experimental data of a 3-kW wind turbine located at the Los Alamos National Laboratory and data generated from a mechanical model of the same structure. The AdaBoost classifier is evaluated with respect to the error rate as well as the true positive and false positive rates, which are typically used in receiver operating characteristic curves. The AdaBoost classifier outperforms the framework classifiers in many cases, improving drastically the detection performance. However, it is shown that the boosting performance depends on the relative location of the condition parameter values on the condition parameter space. The overlaps between the condition parameter values to be combined are quantified using the Bhattacharyya coefficient, which provides a metric for assessing the boosting potential. Finally, omitting condition parameter values corresponding to specific environmental and operational conditions from the boosting process is proposed for obtaining optimum boosting results.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference28 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3