Affiliation:
1. Department of Civil Engineering, Aalborg University, Esbjerg, Denmark
2. Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark
3. 4Subsea AS, Hvalstad, Norway
Abstract
Today, structural integrity inspections of wind turbine blades are typically carried out by the use of rope or platform access. Since these inspection approaches are both tedious and extremely costly, a need for a method facilitating reliable, remote monitoring of the blades has been identified. In this article, it is examined whether a vibration-based damage localization approach proposed by the authors can provide such reliable monitoring of the location of a structural damage in a wind turbine blade. The blade, which is analyzed in idle condition, is subjected to unmeasured hits from a mounted actuator, yielding vibrations that are measured with a total of 12 accelerometers; of which 11 are used for damage localization. The employed damage localization method is an extended version of the stochastic dynamic damage location vector method, which, in its origin, is a model-based method that interrogates damage-induced changes in a surrogate of the transfer matrix. The surrogate’s quasi-null vector associated with the lowest singular value is converted into a pseudo-load vector and applied to a numerical model of the healthy structure in question, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. The proposed extension is based on outlier analysis of the characteristic stress resultants to discriminate between damaged elements and healthy ones; a procedure that previously, in the context of experiments with a small-scale blade, has proved to mitigate noise-induced anomalies and systematic, non-damage-associated adverse effects.
Subject
Mechanical Engineering,Biophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献