Estimation of Dynamic Fracture Parameters in a Transverse Cracked Composite Beam using a Simplified Diagnostic Wave Propagation Model

Author:

Kumar D. Sreekanth1,Mahapatra D. Roy1,Gopalakrishnan S.2

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560 012, India

2. Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560 012, India,

Abstract

A spectral finite element model (SFEM) for a laminated composite beam with a transverse crack is developed and employed in wave-based diagnostic simulations. Although many simplified models of damage in beams for dynamic analysis have been reported in the literature, their utility in the context of damage severity estimation and related structural health monitoring (SHM) applications is not well addressed. The performance of the present simplified model is compared with detailed 2D finite element model (FEM). To estimate the damage severity, two quantities, namely the strain energy release rate (SERR) and a damage force indicator (DFI) are considered. SERR is a localized damage parameter, which can be employed to predict the possibility of damage growth in real time. On the other hand, the DFI is a frequency domain estimate of the load transmission capacity of the damaged structure. To estimate the SERR using SFEM, the continuum dynamic J-integral is discretized in terms of the element nodal variables. One of the main objectives in this article is to study the correlation between the SERR and DFI. Numerical simulations show that the DFI can be estimated efficiently using the proposed SFEM, whereas the dynamic SERR can be estimated with moderate accuracy using SFEM. The numerical results also show that the DFI-SERR correlation curves for various damage configurations and loading can be used. The article is concluded by establishing a preliminary experimental demonstration of the on-line estimation of DFI using cantilever beam with slotted cracks, PZT actuators, and accelerometer array.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3