High resolution bolt pre-load looseness monitoring using coda wave interferometry

Author:

Chen Dongdong1ORCID,Huo Linsheng2,Song Gangbing3ORCID

Affiliation:

1. College of civil engineering, Nanjing Forestry University, Nanjing, Jiangsu, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning, China

3. Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX, USA

Abstract

This paper proposes a new concept, named the Detectable Resolution of Bolt Pre-load (DRBP), by using the coda wave interferometry (CWI) to quantitatively measure the pre-load looseness at a high resolution. Due to its characteristics of roughness, irregularity, and randomly distributed asperities, the contact surface of the bolted components can function as a natural interferometer to scatter the propagation waves. The multiply-scattered coda waves can amplify the slight changes in the travel path and show the visible perturbation in the time domain. By calculating the time-shifted correlation coefficient of coda waves before and after the slight pre-load looseness, the tiny pre-load changes can be clearly revealed. To evaluate the feasibility of the proposed method, a theoretical model considering the time shifts of coda waves and the variations of pre-load is established. Based on the acoustoelastic effect and the wave path summation theory of coda wave interferometry, the model shows that the time shifts of coda waves change linearly with the variations of pre-load. Verification experiments are conducted, and the results show that the R-square values of the fitting curves are larger than 0.9216. In addition, the proposed approach has the feature of high resolution. The ultimate pre-load resolution of the proposed approach is 0.331%, that is, when the variation of pre-load is larger than 0.331%, it can be detected. Therefore, theoretical analysis and experimental results prove that the CWI-based pre-load detection approach holds great potential for the detection of bolt pre-load looseness, especially during the initial stage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3