Affiliation:
1. College of Engineering, Ocean University of China, Qingdao, China
2. Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
Abstract
Deepsea mining risers, which transport mineral resources from the seafloor to surface facilities, are critical components of deepsea mining systems. This article presents a novel cointegration-based method for localizing structural damage in risers subjected to random excitations from waves, currents, and moving floating facilities. Although the dynamic responses of a riser (usually consisting of multiple segments) are often nonstationary, those within an individual pipe segment often have synchronous fluctuations with a common trend, allowing the application of a multivariate time series analysis. Cointegration can thus be performed for a pipe segment by treating the internal responses as the endogenous variables and those of the other pipe segments as the exogenous variables. Consequently, a stationary cointegrating residual for the dynamic responses purged of the influence of nonstationary excitations can be obtained. The cointegrating residual in conjunction with a statistical hypothesis test scheme is used to create an output-only damage indicator. The effectiveness of the proposed damage localization method is demonstrated with a numerical and experimental multi-segment riser. The results indicate that the strain responses of both risers exhibit nonstationary fluctuations due to the changeable environmental excitations. As the proposed method is robust to the external loading, it can accurately identify the damage location.
Funder
National Natural Science Foundation of China
Taishan Scholars Program of Shandong Province
Major Scientific and Technological Innovation Project of Shandong Province
Subject
Mechanical Engineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献