Affiliation:
1. PIMM Laboratory, Arts et Métiers/CNRS/CNAM, Paris, France
2. Prognostics Center of Excellence, Alstom, Saint-Ouen, France
Abstract
Structural health monitoring offers new approaches to interrogate the integrity of complex structures. The structural health monitoring process classically relies on four sequential steps: damage detection, localization, classification, and quantification. The most critical step of such process is the damage detection step since it is the first one and because performances of the following steps depend on it. A common method to design such a detector consists of relying on a statistical characterization of the damage indexes available in the healthy behavior of the structure. On the basis of this information, a decision threshold can then be computed in order to achieve a desired probability of false alarm. To determine the decision threshold corresponding to such desired probability of false alarm, the approach considered here is based on a model of the tail of the damage indexes distribution built using the Peaks Over Threshold method extracted from the extreme value theory. This approach of tail distribution estimation is interesting since it is not necessary to know the whole distribution of the damage indexes to develop a detector, but only its tail. This methodology is applied here in the context of a composite aircraft nacelle (where desired probability of false alarm is typically between 10−4 and 10−9) for different configurations of learning sample size and probability of false alarm and is compared to a more classical one which consists of modeling the entire damage indexes distribution by means of Parzen windows. Results show that given a set of data in the healthy state, the effective probability of false alarm obtained using the Peaks Over Threshold method is closer to the desired probability of false alarm than the one obtained using the Parzen-window method, which appears to be more conservative.
Subject
Mechanical Engineering,Biophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献