Peaks Over Threshold–based detector design for structural health monitoring: Application to aerospace structures

Author:

Rébillat Marc1,Hmad Ouadie2,Kadri Farid1,Mechbal Nazih1

Affiliation:

1. PIMM Laboratory, Arts et Métiers/CNRS/CNAM, Paris, France

2. Prognostics Center of Excellence, Alstom, Saint-Ouen, France

Abstract

Structural health monitoring offers new approaches to interrogate the integrity of complex structures. The structural health monitoring process classically relies on four sequential steps: damage detection, localization, classification, and quantification. The most critical step of such process is the damage detection step since it is the first one and because performances of the following steps depend on it. A common method to design such a detector consists of relying on a statistical characterization of the damage indexes available in the healthy behavior of the structure. On the basis of this information, a decision threshold can then be computed in order to achieve a desired probability of false alarm. To determine the decision threshold corresponding to such desired probability of false alarm, the approach considered here is based on a model of the tail of the damage indexes distribution built using the Peaks Over Threshold method extracted from the extreme value theory. This approach of tail distribution estimation is interesting since it is not necessary to know the whole distribution of the damage indexes to develop a detector, but only its tail. This methodology is applied here in the context of a composite aircraft nacelle (where desired probability of false alarm is typically between 10−4 and 10−9) for different configurations of learning sample size and probability of false alarm and is compared to a more classical one which consists of modeling the entire damage indexes distribution by means of Parzen windows. Results show that given a set of data in the healthy state, the effective probability of false alarm obtained using the Peaks Over Threshold method is closer to the desired probability of false alarm than the one obtained using the Parzen-window method, which appears to be more conservative.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3