Statistical guided-waves-based structural health monitoring via stochastic non-parametric time series models

Author:

Amer Ahmad1,Kopsaftopoulos Fotis P1ORCID

Affiliation:

1. Intelligent Structural Systems Laboratory (ISSL), Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

Damage detection in active-sensing, guided-waves-based structural health monitoring (SHM) has evolved through multiple eras of development during the past decades. Nevertheless, there still exist a number of challenges facing the current state-of-the-art approaches, both in the industry as well as in research and development, including low damage sensitivity, lack of robustness to uncertainties, need for user-defined thresholds, and non-uniform response across a sensor network. In this work, a novel statistical framework is proposed for active-sensing SHM based on the use of ultrasonic guided waves. This framework is based on stochastic non-parametric time series models and their corresponding statistical properties in order to readily provide healthy confidence bounds and enable accurate and robust damage detection via the use of appropriate statistical decision-making tests. Three such methods and corresponding statistical quantities (test statistics) along with decision-making schemes are formulated and experimentally assessed via the use of three coupons with different levels of complexity: an Al plate with a growing notch, a carbon fiber-reinforced plastic (CFRP) plate with added weights to simulate local damage, and the CFRP panel used in the Open Guided Waves project, all fitted with piezoelectric transducers under a pitch-catch configuration. The performance of the proposed methods is compared to that of state-of-the-art time-domain damage indices (DIs). The results demonstrate the increased detection sensitivity and robustness of the proposed methods, with better tracking capability of damage evolution compared to conventional approaches, even for damage-non-intersecting actuator–sensor paths. In particular, the Z statistic emerges as the best damage detection metric compared to conventional DIs, as well as the other proposed statistics. Overall, the proposed statistics in this study promise greater damage sensitivity across different components, with enhanced robustness to uncertainties, as well as user-friendly application.

Funder

Vertical Lift Research Center of Excellence

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3