Prediction of landing gear loads using machine learning techniques

Author:

Holmes Geoffrey1,Sartor Pia2,Reed Stephen3,Southern Paul4,Worden Keith1,Cross Elizabeth1

Affiliation:

1. Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. Department of Aerospace Engineering, University of Bristol, Bristol, UK

3. Defence Science and Technology Laboratory (Dstl), Salisbury, UK

4. Messier-Bugatti-Dowty, Gloucester, UK

Abstract

This article investigates the feasibility of using machine learning algorithms to predict the loads experienced by a landing gear during landing. For this purpose, the results on drop test data and flight test data will be examined. This article will focus on the use of Gaussian process regression for the prediction of loads on the components of a landing gear. For the learning task, comprehensive measurement data from drop tests are available. These include measurements of strains at key locations, such as on the side-stay and torque link, as well as acceleration measurements of the drop carriage and the gear itself, measurements of shock absorber travel, tyre closure, shock absorber pressure and wheel speed. Ground-to-tyre loads are also available through measurements made with a drop test ground reaction platform. The aim is to train the Gaussian process to predict load at a particular location from other available measurements, such as accelerations, or measurements of the shock absorber. If models can be successfully trained, then future load patterns may be predicted using only these measurements. The ultimate aim is to produce an accurate model that can predict the load at a number of locations across the landing gear using measurements that are readily available or may be measured more easily than directly measuring strain on the gear itself (for example, these may be measurements already available on the aircraft, or from a small number of sensors attached to the gear). The drop test data models provide a positive feasibility test which is the basis for moving on to the critical task of prediction on flight test data. For this, a wide range of available flight test measurements are considered for potential model inputs (excluding strain measurements themselves), before attempting to refine the model or use a smaller number of measurements for the prediction.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference25 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3