A surveillance system for urban buried pipeline subject to third-party threats based on fiber optic sensing and convolutional neural network

Author:

Li Suzhen12ORCID,Peng Renzhu1ORCID,Liu Zelong1ORCID

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

Third-party threats, such as construction activities and man-made sabotage, have become the main cause of pipeline accidents in recent years. This article proposes a surveillance system for protecting the buried municipal pipelines from third-party damage based on distributed fiber optic sensing and convolutional neural network (CNN). Due to the ability of detecting very small perturbation, the phase-sensitive optical time-domain reflectometry (φ-OTDR) is employed for distributed vibration measurements along the pipelines. A two-layer classifier based on CNN is developed: one layer is used to discriminate the third-party activities from the environmental disturbance; the other is to determine the specific type of the third-party events. Meanwhile, a time-space matrix is introduced to reduce the false alarm and correct possible errors by taking into account the continuity of the signals in time and space. Field tests are carried out to validate the effectiveness of the proposed surveillance system. The recognition results show that the CNN-based classifiers achieve the accuracy of over 97%, which is 14.8% higher than that of the traditional feature-based machine learning method using random forest (RF) algorithm. It also indicates that the time-space matrix can dramatically reduce the false alarm and enhance the recognition accuracy.

Funder

National Natural Science Foundation of China

national key research and development program of china stem cell and translational research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference28 articles.

1. Muhlbauer WK. Pipeline risk management manual: Ideas, techniques, and resources. 3rd ed. Oxford: Elsevier, 2004, pp. 3–49.

2. Pipeline monitoring using acoustic principal component analysis recognition with the Mel scale

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3