A general framework for supervised structural health monitoring and sensor output validation mitigating data imbalance with generative adversarial networks-generated high-dimensional features

Author:

Soleimani-Babakamali Mohammad Hesam1,Soleimani-Babakamali Roksana2,Sarlo Rodrigo1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Virginia Tech University, Blacksburg, VA, USA

2. Department of Computer Science, University of Vienna, Vienna, Austria

Abstract

This study proposes a novelty-classification framework that applies to structural health monitoring (SHM) and sensor output validation (SOV) problems. The proposed framework has simple high-dimensional features with several advantages. First, the feature extraction method is extensively applicable to instrumented structures. Second, the high-dimensional features’ utilization alleviates one of the main issues of supervised novelty classifications, namely, imbalanced datasets and low-sampled data classes. Recurrent Neural Networks are employed for the classification of high-dimensional features. Furthermore, generative adversarial networks (GAN) are trained with low-sampled data classes’ high-dimensional features for generating new data objects. The generated data objects are combined with the initial training set for improving classification results. The proposed framework is studied on two SHM and SOV datasets. The SHM dataset has twenty-one data classes, with a total test accuracy of 99.60% compared to another study with 88.13% accuracy. The SOV classification shows improved results with a mean accuracy of 96.5% compared to three other studies with mean accuracy values of 93.5%, 92.97%, and 71.1%. Furthermore, the integration of GAN’s generated data objects with low-sampled classes improved those classes’ mean F1 score from 44.77% to 64.58% and from 73.39% to 90.84% on SOV and SHM case studies, respectively. The integration of GAN-generated data objects with the initial low-sampled data classes for accuracy improvement shows more potential in the SHM dataset than the SOV case, which can be due to the signal pattern-based labeling logic of SOV datasets.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3