SHM-informed life-cycle intelligent maintenance of fatigue-sensitive detail using Bayesian forecasting and Markov decision process

Author:

Lai Li1,Dong You1ORCID,Smyl Danny2

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong

2. Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL, USA

Abstract

Civil and maritime engineering systems must be efficiently managed to control the failure risk at an acceptable level as their performance is gradually degraded throughout the operational life, caused by fatigue and corrosion. Structural health monitoring develops a timely capability to assess the structural condition and performance metrics. However, using actual long-term monitoring data to guide the life-cycle management under stochastic environments has not been sufficiently studied. To realize an optimal maintenance strategy within the service life, an integrated monitoring-based optimal management framework is developed on the basis of the partially observable Markov decision processes (POMDPs) and Bayesian forecasting. In the proposed framework, the stochastic fatigue processes are quantified by the state transition matrix. The Bayesian dynamic linear model is embedded in POMDPs as a continuous observation part to forecast the cycling impacts and estimate the deterioration rate using long-term dynamic strain responses. In addition, making use of the special features of the problem considered in this paper, an adaptive discretization strategy is proposed to alleviate the complexity of large discrete observed spaces in the POMDP. The applicability and feasibility of the framework are evaluated by intelligent maintenance of fatigue-sensitive components with real-world monitoring data. After solving the POMDP by an efficient offline solver, the results obtained in this paper demonstrate that structural interventions are uneconomical to extend the life when a welded detail is approaching its end of life due to the normal service. Furthermore, if multiple interventions are available, the framework can find optimal maintenance actions based on the trade-off between long-term utility and the corresponding cost. This framework as the prototype could also be adjusted to aid life-cycle intelligent maintenance of other types of components under different deterioration scenarios.

Funder

Research Grant Council of Hong Kong

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3