The probability of detection for structural health monitoring systems: Repeated measures data

Author:

Schubert Kabban Christine M1,Greenwell Brandon M1,DeSimio Martin P2,Derriso Mark M3

Affiliation:

1. Department of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA

2. University of Dayton Research Institute, University of Dayton, Dayton, OH, USA

3. Air Force Research Laboratory, Human Effectiveness Directorate, Wright-Patterson AFB, OH, USA

Abstract

The United States Air Force currently relies on schedule-based inspections using nondestructive evaluation methods for ensuring airframe integrity. The sensitivity of a nondestructive evaluation method is quantified statistically using a probability of detection process. The purpose of the probability of detection process is to generate a [Formula: see text] metric for a given nondestructive evaluation technique and corresponding defect (e.g. crack). This process could be conducted under various inspection conditions and defect sizes. The set of factors varied in the process is controlled to allow each nondestructive evaluation inspection to be treated as statistically independent. Current United States Air Force structural inspections are performed at time intervals that adhere to the independence assumption. However, the United States Air Force plans to service airframes based on their actual condition instead of the current schedule-based approach. Accordingly, there is emphasis on developing advanced health management technologies, such as structural health monitoring systems, which provide an automated and real-time assessment of a structure’s ability to serve its intended purpose. Therefore, structural health monitoring is considered to be equivalent to an in situ nondestructive evaluation structural inspection device. With a structural health monitoring system, the time interval between inspections will be much smaller than the time intervals between nondestructive evaluation inspections. Since structural health monitoring measurements are from the same sensors, in the same location, the independent measurement assumption used to analyze nondestructive evaluation methods is invalid. In this article, we present a statistical method consistent with current probability of detection process, yet designed to appropriately analyze dependent data. We demonstrate this method first with simulated data and then with experimental data from three test specimens of a representative aircraft structural component. This method leverages the advantages of a structural health monitoring system through its frequent measurements while maintaining its usefulness through appropriately computed probability of detection values. Furthermore, we present a numerical method for estimating the number of test specimens needed to achieve a desired [Formula: see text] value.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3