A deep learning semantic segmentation network with attention mechanism for concrete crack detection

Author:

Hang Jiaqi1ORCID,Wu Yingjie1,Li Yancheng2ORCID,Lai Tao1,Zhang Jinge1,Li Yang3

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu, China

2. School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia

3. Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China

Abstract

In this research, an attention-based feature fusion network (AFFNet), with a backbone residual network (ResNet101) enhanced with two attention mechanism modules, is proposed for automatic pixel-level detection of concrete crack. In particular, the inclusion of attention mechanism modules, for example, the vertical and horizontal compression attention module (VH-CAM) and the efficient channel attention upsample module (ECAUM), is to enable selective concentration on the crack feature. The VH-CAM generates a feature map integrating pixel-level information in vertical and horizontal directions. The ECAUM applied on each decoder layer combines efficient channel attention (ECA) and feature fusion, which can provide rich contextual information as guidance to help low-level features recover crack localization. The proposed model is evaluated on the test dataset and the results reach 84.49% for mean intersection over union (MIoU). Comparison with other state-of-the-art models proves high efficiency and accuracy of the proposed method.

Funder

Natural Science Foundation of Jiangsu Province

International Collaboration Project, Science and Education Integration Innovation Pilot Program from Qilu University of Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3