Impact detection in anisotropic materials using a time reversal approach

Author:

Ciampa F1,Meo M1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK.

Abstract

This article presents an in situ imaging method able to detect in real-time the impact source location in reverberant complex composite structures using only one passive sensor. This technique is based on the time reversal acoustic method applied to a number of waveforms stored in a database containing the impulse response (Green’s function) of the structure. The proposed method allows achieving the optimal focalization of the acoustic emission source in the time and spatial domain as it overcomes the drawbacks of other ultrasonic techniques. This is mainly due to the dispersive nature of guided Lamb waves as well as the presence of multiple scattering and mode conversion that can degrade the quality of the focusing, causing poor localization. Conversely, using the benefits of a diffuse wave field, the imaging of the source location can be obtained through a virtual time reversal procedure, which does not require any iterative algorithms and a priori knowledge of the mechanical properties and the anisotropic group speed. The efficiency of this method is experimentally demonstrated on a stiffened composite panel. The results showed that the impact source location can be retrieved with a high level of accuracy in any position of the structure (maximum error was less than 3%).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3