Affiliation:
1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
2. China Academy of Space Technology, Beijing, China
Abstract
Fault detection systems are typically applied in the railway industry to examine the structural health status of the wheel/rail system. We herein propose a time-domain kurtosis beamforming technique using an array of microphones for the fault identification and localisation of the wheel/rail system under an environment with high background noise. As an acoustics-based noncontact diagnosis method, this technique overcomes the challenge of the contact between the sensors and examined structures, and it is more applicable for impulsive signals of broadband nature, such as impact noise generated from faults on the wheel surface. Moreover, the application of kurtosis enables the identification and localisation at low signal-to-noise ratio. Under such circumstance, the impulsive signals generated by faults were totally merged in rolling noise and background noise. Meanwhile, different types of faults on the wheels could be identified and localised by observing the kurtosis value on the beamforming sound map. The effectiveness of the proposed method to diagnose the type of wheel fault with low signal-to-noise ratio and moving source has been validated experimentally. This method may provide a useful tool for the routine maintenance of trains.
Funder
General Research Grant from the Hong Kong SAR government
hong kong polytechnic university
Subject
Mechanical Engineering,Biophysics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献