A novel spectral coherence-based envelope spectrum for railway axle-box bearing damage identification

Author:

Chen Bingyan1ORCID,Song Dongli1,Zhang Weihua1,Cheng Yao1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

Abstract

Damage identification of axle-box bearings is essential to ensure the safe operation of railway trains. The envelope spectrums generated by spectral coherence are effective bearing damage identification tools, but the traditional spectral coherence-based envelope spectrums cannot effectively reveal the bearing damage features under strong interference noise or cannot fully extract the damage information distributed in multiple spectral frequency bands. To solve these problems, a weighted combined envelope spectrum (WCES) based on spectral coherence is proposed as an enhanced bearing damage detector in this paper. First, the frequency domain signal-to-noise ratio (FDSNR) is devised to measure the damage information in each spectral frequency component of spectral coherence. Then, an information threshold is introduced into the estimated FDSNR to construct a weighting function to enhance the informative spectral frequency components and eliminate the interference components. Eventually, the spectral coherence normalized by the weighting function is integrated to generate WCES for bearing damage identification. The simulation and experimental results indicate that the proposed method can effectively excavate the fault-related information and detect railway axle-box bearing damages, and the comparisons with the state-of-the-art methods demonstrate the superiority of the proposed method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3