An up-scaling temperature compensation framework for guided wave–based structural health monitoring in large composite structures

Author:

Giannakeas Ilias N.1ORCID,Sharif Khodaei Zahra.1ORCID,Aliabadi M. H.1

Affiliation:

1. Department of Aeronautics, Imperial College London South Kensington Campus, London, UK

Abstract

Variations in environmental conditions can significantly impair the accuracy and reliability of guided wave structural health monitoring systems. Acquisition of baseline signals over a wide temperature range for the purposes of damage detection and localization is impractical for large composite structures. A novel framework for compensating the effect of temperature at a post-processing stage is presented in this paper to allow updating the compensation factors using observations obtained at different scales. The proposed methodology utilizes observations collected at the lower scales, where a large amount of data under controlled environment is available. Subsequently, the estimated compensation factors are propagated to the higher scales as priors within a Bayesian framework. This way, the measurements required from the high levels are reduced while making it possible to also update the estimated factors during the operation of the structure. The performance of the methodology is evaluated at different scales and compared with the direct use of compensation factors obtained from coupon studies only. It is demonstrated that the proposed methodology improves the fidelity of the compensation algorithm leading to a reduction in the uncertainty of the temperature-compensated signals. Based on the findings of the present study, the reduction in the uncertainty of the compensation improves the performance of both damage detection as well as damage localization in a large composite panel.

Funder

JTICLEANSKY2

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3