LMS-based approach to structural health monitoring of nonlinear hysteretic structures

Author:

Nayyerloo M.1,Chase JG2,MacRae GA3,Chen X-Q.2

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand,

2. Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

3. Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

Abstract

Structural health monitoring (SHM) algorithms based on adaptive least mean squares (LMS) filtering theory can directly identify time-varying changes in structural stiffness in real-time in a computationally efficient fashion. However, better metrics of seismic structural damage and future utility after an event are related to permanent and total plastic deformations. This study presents a modified LMS-based SHM method and a novel two-step structural identification technique using a baseline nonlinear Bouc—Wen structural model to directly identify changes in stiffness due to damage as well as plastic or permanent deflections. The algorithm is designed to be computationally efficient; therefore it can work in real-time. An in silico single-degree-of-freedom (SDOF) nonlinear shear-type structure is used to prove the concept. The efficiency of the proposed SHM algorithm in identifying stiffness changes and plastic/permanent deflections is assessed under different ground motions using a suite of 20 different ground acceleration records. The results show that in a realistic scenario with fixed filter tuning parameters, the proposed LMS-based SHM algorithm identifies stiffness changes to within 10% of true values within 2s. Permanent deflection is identified to within 14% of the actual as-modeled value using noise-free simulation-derived structural responses. This latter value provides important post-event information on the future serviceability, safety, and repair cost.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3