Fault detection of engine timing belt based on vibration signals using data-mining techniques and a novel data fusion procedure

Author:

Khazaee Meghdad1,Banakar Ahmad1,Ghobadian Barat1,Mirsalim Mostafa2,Minaei Saeid1,Jafari Mohamad3,Sharghi Peyman3

Affiliation:

1. Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran

2. Amirkabir University of Technology (AUT), Tehran, Iran

3. Iran Khodro Powertrain Company (IPCO), Tehran, Iran

Abstract

In this research, an intelligent procedure was designed and implemented based on vibration signals for detecting and classifying prevalent faults of an internal combustion engine timing belt. The vibration signals of the timing belt were captured during operation in six different states: healthy, tooth crack, back crack, wear, separated tooth, and oil pollution. These signals were processed at three domains, namely, time, frequency, and time–frequency domains. Time-domain signals were transformed into the frequency and time–frequency domains using fast Fourier transform and wavelet transform, respectively. Then, six statistical features were extracted from vibration signals at all three domains. The extracted features were used as inputs to an artificial neural network for the primary classification of timing belt defects. Classification accuracy of artificial neural network in detecting and classifying timing belt faults in the time, frequency, and time–frequency domains have obtained 71%, 78%, and 84%, respectively. Combining separate classification accuracies from time, frequency, and time–frequency domains has been implemented using Dempster–Shafer theory of evidence. Classification accuracy based on the fusion of time- and frequency-domain classifiers was 97%, from time and time–frequency results was 98%, and from frequency and time–frequency results was also 98%, whereas the combination of results for all domains led to a >99% accuracy. Results show that the proposed methodology can detect and classify timing belt defects with high precision and reliability before failure occurrence.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3