Experimental and numerical investigations on the acoustoelastic effect in hyperelastic waveguides

Author:

Barth Tilmann1ORCID,Rauter Natalie1ORCID,Lammering Rolf1

Affiliation:

1. Chair of Solid Mechanics, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Hamburg, Germany

Abstract

Guided ultrasonic wave based structural health monitoring has been of interest over decades. However, the influence of prestress states on the propagation of Lamb waves in thin-walled structures is not fully covered yet. So far experimental work presented in the literature only focuses on a few individual frequencies, which does not allow a comprehensive verification of the numerous numerical investigations. Furthermore, most work is based on the strain-energy density function by Murnaghan. To validate the common modeling approach and to investigate the suitability of other nonlinear strain-energy density functions, an extensive experimental and numerical investigation covering a large frequency range is presented here. The numerical simulation comprises the use of the Neo-Hooke as well as the Murnaghan material model. It is found that these two material models show qualitatively similar results. Furthermore, the comparison with the experimental results reveals that the Neo-Hooke material model reproduces the effect of prestress on the difference in the Lamb wave phase velocity very well in most cases. For the [Formula: see text] wave mode at higher frequencies, however, the sign of this difference is only correctly predicted by the Murnaghan model. In contrast to this, the Murnaghan material model fails to predict the sign change for the [Formula: see text] wave mode.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3