A novel time–frequency transform for broadband Lamb waves dispersion characteristics analysis

Author:

Luo Zhi1,Zeng Liang1ORCID,Lin Jing2ORCID

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

2. School of Reliability and Systems Engineering, Science & Technology on Reliability and Environmental Engineering Laboratory, Beihang University, Haidian District, Beijing, China

Abstract

Owing to carrying rich information about structure flaws, broadband Lamb waves are considered as a promising tool for non-destructive testing. However, since every Lamb wave mode has its own dispersion characteristics, the feature extraction among broadband multimodal Lamb wave is challenging. Time–frequency representation is significantly effective to analyze dispersive signals. In this article, taking advantages of the idea of dispersion compensation, two kinds of time–frequency domain dispersion analysis methods for broadband Lamb wave were proposed. The first one is based on the concept of the general parameterized time–frequency transform. A kernel function related to group delay was designed and the time–frequency compensation transform was proposed. The other one combines the segment linear mapping technique and the short-frequency Fourier transform, called the time–frequency de-dispersion transform. Both these two methods work well in representing multimodal Lamb wave signals with high resolution. However, time–frequency de-dispersion transform outperforms in representing multipath Lamb waves than time–frequency compensation transform. Moreover, a mode purification strategy was also proposed for distinguishing the interested mode from interferences. According to verification in synthetic and experimental data, not only the multimodal components but also multipath echoes are represented in time–frequency plane with high resolution. Finally, the proposed method shows a great robustness to inaccuracies in the dispersion data.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3